题目内容

6.如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P.求证:点P到三边AB,BC,CA所在的直线的距离相等.

分析 过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH.

解答 证明:如图,过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,

∵△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P,
∴PF=PG,PG=PH,
∴PF=PG=PH,
∴点P到三边AB、BC、CA所在直线的距离相等.

点评 本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网