题目内容

【题目】如图,在RtABC 中,AB=ACDE是斜边BC上两点,且∠DAE=45°,将△ABE绕点顺时针旋转90后,得到△ACF,连接DF.下列结论中:①∠DAF=45° ②△≌△ AD平分∠EDF 正确的有______________(填序号)

【答案】①③④

【解析】由旋转性质得△ABE≌△ACF,所以∠BAE=∠CAF,因为∠DAE=45°,∠BAC=90°,所以∠BAE+∠CAD=45°,所以∠CAF+∠DAC=45°,即∠DAF=45°,则①正确;只有AB=AC,∠B=∠C,不能得到△ABE≌△ACD,错误;因为∠DAE=45°,∠DAF=45°,所以AD平分∠EDF,则正确;易证△AED≌△AFD,所以DE=DF,又△ABE≌△ACD,所以BE=CF,∠ACF=∠B=45°,所以∠DCF=90°,所以BE2+DC2=DE2,则④正确,故答案①③④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网