题目内容
【题目】如图,在平面直角坐标系 中,,.
①当 时,则______;
②在图中的网格区域内找一点,使,且四边形被过点的一条直线分割成两部分后,可以拼成一个正方形,则点坐标为_______.
【答案】
【解析】
(1)先利用勾股定理分别计算三边长,再利用勾股定理的逆定理可得:∠FGE=90°;
(2)构建全等三角形:△APF≌△MEP,构建P的位置,根据三角形全等得到正方形.
(1)如图1,连接EF,
由勾股定理得:FG2=22+42=20,
GE2=42+82=80,
EF2=62+82=100,
∴FG2+GE2=EF2,
∴∠FGE=90°,
故答案为:90°;
(2)如图2,过P作PM⊥x轴于M,当P(7,7),PM为分割线;
根据格点的长度易得:△APF≌△MEP≌△BFP,
∴∠APF=∠MEP,
∵∠MEP+∠MPE=90°,
∴∠APF+∠MPE=90°,
即∠FPE=90°,
四边形OEPF将△EPM剪下放在△BFP上,构建正方形BOMP;
故答案为:(7,7).
【题目】为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:
零花钱数额元 | 人数(频数) | 频率 |
6 | 0.15 | |
12 | 0.30 | |
16 | 0.40 | |
0.10 | ||
2 |
请根据以下图表,解答下列问题:
(1)这次被调查的人数共有__________人,__________;
(2)计算并补全频数分布直方图;
(3)请估计该校1500名学生中每月零花钱数额低于90的人数.
【题目】为准备参加某市2019年度中小学生机器人竞赛,学校对甲、乙两支机器人制作小队所创作的机器人分别从创意、设计、编程与制作三方面进行量化,各项量化满分100分,根据量化结果择优推荐.它们三项量化得分如下表:
量化项目 | 量化得分 | |
甲队 | 乙队 | |
创意 | 85 | 72 |
设计 | 70 | 66 |
编程与制作 | 64 | 84 |
(1)如果根据三项量化的平均分择优推荐,哪队将被推荐参赛?
(2)根据本次中小学生机器人竞赛的主题要求,如果学校根据创意、设计、编程与制作三项量化得分按的比例确定每队最后得分的平均分择优推荐,哪队将被推荐参赛?并对另外一队提出合理化的建议.