题目内容
如图,下列四个关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°,选出其中的两个关系作为命题的题设,命题的结论:四边形ABCD是平行四边形,请写一个真命题和一个假命题.
你写的真命题是:已知:在四边形ABCD中,
求证:四边形ABCD是平行四边形.
证明:
你写的假命题是:
题设:
结论:四边形ABCD是平行四边形,你认为它是假命题的理由是:
你写的真命题是:已知:在四边形ABCD中,
①
①
,④
④
;求证:四边形ABCD是平行四边形.
证明:
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形
.∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形
你写的假命题是:
题设:
在四边形ABCD中,AD∥BC,AB=CD
在四边形ABCD中,AD∥BC,AB=CD
;结论:四边形ABCD是平行四边形,你认为它是假命题的理由是:
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形
∴不能判定四边形ABCD是平行四边形
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形
.∴不能判定四边形ABCD是平行四边形
分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.
其中解法一是证明两组对角相等的四边形是平行四边形;
解法二是证明两组对边平行的四边形是平行四边形;
解法三是证明一组对边平行且相等的四边形是平行四边形;
解法四是证明两组对角相等的四边形是平行四边形.
其中解法一是证明两组对角相等的四边形是平行四边形;
解法二是证明两组对边平行的四边形是平行四边形;
解法三是证明一组对边平行且相等的四边形是平行四边形;
解法四是证明两组对角相等的四边形是平行四边形.
解答:解:真命题如下:
已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,
求证:四边形ABCD是平行四边形.
证明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四边形ABCD是平行四边形.
解法二:
已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
解法三:
已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四边形ABCD是平行四边形;
解法四:
已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四边形ABCD是平行四边形;
假命题如下:在四边形ABCD中,AD∥BC,AB=CD.
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形.
故答案可以是:①,④;∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形.
已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,
求证:四边形ABCD是平行四边形.
证明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四边形ABCD是平行四边形.
解法二:
已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
解法三:
已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四边形ABCD是平行四边形;
解法四:
已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求证:四边形ABCD是平行四边形.
证明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四边形ABCD是平行四边形;
假命题如下:在四边形ABCD中,AD∥BC,AB=CD.
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形.
故答案可以是:①,④;∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
∵AD∥BC,AB=CD在四边形ABCD中,是一组对边平行,另一组对边相等,
∴不能判定四边形ABCD是平行四边形.
点评:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
练习册系列答案
相关题目