题目内容
【题目】如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)若∠AOC=50°,求出∠BOD的度数;
(2)试判断OE是否平分∠BOC,并说明理由.
【答案】(1)155°;(2)证明见解析
【解析】
试题分析:(1)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;
(2)根据角平分线的定义可得∠DOA=∠DOC,再根据平角和余角的性质可得∠COE=∠BOE,从而求解.
解:(1)因为∠AOC=50°,OD平分∠AOC,
所以∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,
所以∠BOD=∠DOC+∠BOC=155°;
(2)OE平分∠BOC.理由如下:
∵OD平分∠AOC,
∴∠DOA=∠DOC,
∵∠DOE=90°,
∴∠DOC+∠COE=90°,∠DOA+∠BOE=90°,
∴∠COE=∠BOE,
∴OE平分∠BOC.
练习册系列答案
相关题目