题目内容
小文掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6),他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点B(x,y)恰好在直线y=-x+7上的概率是________.
分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=-x+7上的情况,再利用概率公式求得答案.
解答:列表得:
第一次 第二次 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
∴点B(x,y)恰好在直线y=-x+7上的概率是:=.
故答案为:.
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目