题目内容
【题目】(9分)已知如图(1):△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.
(1)写出线段EF与BE、CF间的数量关系?(不证明)
(2)若AB≠AC,其他条件不变,如图(2),图中线段EF与BE、CF间是否存在(1)中数量关系?请说明理由.
(3)若△ABC中,AB≠AC,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F,如图(3),这时图中线段EF与BE,CF间存在什么数量关系?请说明理由.
【答案】(1)EF=BE+CF;(2)仍然有EF=BE+CF,理由见解析;(3)EF=BE﹣CF,理由见解析.
【解析】
试题(1)根据角平分线的定义可得∠EBO=∠OBC,已知EF∥BC,根据平行线的性质可得∠EOB=∠OBC,所以∠EOB=∠EBO,再由等腰三角形的判定可得OE=BE.同理可得OF=FC,所以EF=EO+OF=BE+CF;(2)仍然存在EF=BE+CF,根据(1)的方法即可证得结论;
(3)EF=BE﹣CF,利用(1)的方法可证得EO=BE,FO=CF,可得到EF=BE﹣CF.
试题解析:解:(1)EF=BE+CF;
(2)仍然有EF=BE+CF.理由如下:
∵EF∥BC,
∴∠EOB=∠OBC,
∵BO平分∠ABC,
∴∠EBO=∠OBC,
∴∠EOB=∠EBO,
∴OE=BE,同理OF=FC,
∴EF=EO+OF=BE+CF;
(3)EF=BE﹣CF.理由如下:
∵OE∥BC,
∴∠EOC=∠OCD,
∵CO平分∠ACD,
∴∠FCO=∠OCD,
∴∠FCO=∠FOC,
∴OF=CF,
同理可得到BE=EO,
∴EF=EO﹣FO=BE﹣CF.
练习册系列答案
相关题目