题目内容

【题目】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.

(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.

【答案】
(1)

证明:连接OD,

∵CD是⊙O切线,

∴∠ODC=90°,

即∠ODB+∠BDC=90°,

∵AB为⊙O的直径,

∴∠ADB=90°,

即∠ODB+∠ADO=90°,

∴∠BDC=∠ADO,

∵OA=OD,

∴∠ADO=∠A,

∴∠BDC=∠A;


(2)

解:∵CE⊥AE,

∴∠E=∠ADB=90°,

∴DB∥EC,

∴∠DCE=∠BDC,

∵∠BDC=∠A,

∴∠A=∠DCE,

∵∠E=∠E,

∴△AEC∽△CED,

∴EC2=DEAE,

∴16=2(2+AD),

∴AD=6.


【解析】本题考查了切线的性质,相似三角形的判定和性质,平行线的性质,熟练掌握切线的性质是解题的关键.(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到 ,解方程即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网