题目内容
【题目】如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;
(2)如果点P的坐标是(﹣a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.
备用图
【答案】(1)A2(4,0),B2(5,0),C2(5,2);(2)PP2=6.
【解析】试题分析:(1)根据关于y轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A1B1C1各点坐标,又关于直线l的对称图形点的坐标特点是纵坐标相同,横坐标之和等于3的二倍,由此求出△A2B2C1的三个顶点的坐标;
(2)P与P1关于y轴对称,利用关于y轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P1的坐标,再由直线l的方程为直线x=3,利用对称的性质求出P2的坐标,即可PP2的长.
试题解析:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2);
(2)如图1,当0<a<3时,∵P与P1关于y轴对称,P(﹣a,0),∴P1(a,0),
又∵P1与P2关于l:直线x=3对称,
设P2(x,0),可得: =3,即x=6﹣a,
∴P2(6﹣a,0),
则PP2=6﹣a﹣(﹣a)=6﹣a+a=6.
练习册系列答案
相关题目