题目内容
【题目】如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是_____.
【答案】
【解析】
根据菱形的性质得出△ADC和△ABC是等边三角形,进而利用全等三角形的判定得出△ADH≌△ACG,得出四边形AGCH的面积等于△ADC的面积,进而求出即可.
连接AC,
∵四边形ABCD是菱形,
∴∠B=∠D=60°,AB=AD=DC=BC=1,
∴∠BCD=∠DAB=120°,
∴∠1=∠2=60°,
∴△ABC、△ADC都是等边三角形,
∴AC=AD=1,
∵AB=1,
∴△ADC的高为,AC=1,
∵扇形BEF的半径为1,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AF、DC相交于HG,设BC、AE相交于点G,
在△ADH和△ACG中,
,
∴△ADH≌△ACG(ASA),
∴四边形AGCH的面积等于△ADC的面积,
∴图中阴影部分的面积是:S扇形AEF﹣S△ACD==,
故答案为:.
练习册系列答案
相关题目