题目内容

已知如图:△ABC内接于⊙O,P为BC边延长线上的一点,PA为⊙O的切线,切点为A,若PA=6,PC=4,求
sinB
sinACB
的值.
∵PA是⊙O的切线,
∴PA2=PC•PB,
∵PA=6,PC=4,
∴PB=9;
由弦切角定理知:∠PAC=∠ABC,
又∵∠APC=∠BPA,
∴△PAC△PBA,
AB
AC
=
PB
PA
=
3
2

过A作⊙O的直径AD,连接BD、CD;
则有:∠ADB=∠ACB,∠ABC=∠ADC;
在Rt△ABD中,sinADB=sinACB=AB:AD,
同理得:sinADC=sinABC=AC:AD;
sinB
sinACB
=
AC
AB
=
2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网