题目内容
【题目】已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论正确的是( )
①4a﹣2b+c=0
②a<b<0
③2a+c>0
④2a﹣b+1>0.
A.①②③ B.②③④ C.①③④ D.①②③④
【答案】D.
【解析】
试题分析:①由函数图象过点(﹣2,0),将点(﹣2,0)代入到抛物线解析式即可得知①正确;②结合函数图象与x轴的交点横坐标可以得知抛物线对称轴﹣<﹣<0,再由抛物线与y轴的交点在y轴正半轴得知a<0,解不等式即可得知②正确;③令ax2+bx+c=0,由根与系数的关系即可得出关于的不等式,解不等式得出c与a之间的关系,将其代入2a+c即可得知③正确;④由抛物线与y轴交点坐标的范围可找出c的范围,结合③中c与a的关系可得出a的取值范围,再结合②结论即可得知④正确.综上即可得出结论.故选D.
练习册系列答案
相关题目
【题目】我校八年级全体男同学参加了跳绳比赛.从中随机抽取某班男同学的跳绳成绩,制作了如下频数分布表:
组别 | 99.5﹣109.5 | 109.5﹣119.5 | 119.5﹣129.5 | 129.5﹣139.5 | 139.5﹣149.5 | 149.5﹣159.5 |
频数 | 2 | 4 | 8 | 7 | 3 | 1 |
根据上面统计信息,解答下列问题:
(1)补全频数分布直方图;
(2)班级准备对跳绳成绩优秀的男同学进行奖励,奖励人数占班级男同学的20%,该班张辉同学的成绩为140个,通过计算判断张辉能否获得奖励;
(3)八年级共有200名男同学,若规定男同学的跳绳成绩在120个以上(含120个)为合格,估计该校八年级男同学成绩合格的人数.