题目内容

如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=
kx
的图象相交于C,D两点精英家教网,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的结论是
 
.(把你认为正确结论的序号都填上).
分析:此题要根据反比例函数的性质进行求解,解决此题的关键是要证出CD∥EF,可从①问的面积相等入手;△DFE中,以DF为底,OF为高,可得S△DFE=
1
2
|xD|•|yD|=
1
2
k,同理可求得△CEF的面积也是
1
2
k,因此两者的面积相等;若两个三角形都以EF为底,那么它们的高相同,即E、F到AD的距离相等,由此可证得CD∥EF,然后根据这个条件来逐一判断各选项的正误.
解答:解:设点D的坐标为(x,
k
x
),则F(x,0).
由函数的图象可知:x>0,k>0.精英家教网
∴S△DFE=
1
2
DF•OF=
1
2
|xD|•|
k
xD
|=
1
2
k,
同理可得S△CEF=
1
2
k,
故S△DEF=S△CEF
若两个三角形以EF为底,则EF边上的高相等,故CD∥EF.
①由上面的解题过程可知:①正确;
②∵CD∥EF,即AB∥EF,∴△AOB∽△FOE,故②正确;
③条件不足,无法得到判定两三角形全等的条件,故③错误;
④法一:∵CD∥EF,DF∥BE,
∴四边形DBEF是平行四边形,
∴S△DEF=S△BED
同理可得S△ACF=S△ECF
由①得:S△DBE=S△ACF
又∵CD∥EF,BD、AC边上的高相等,
∴BD=AC,④正确;
法2:∵四边形ACEF,四边形BDEF都是平行四边形,
而且EF是公共边,
即AC=EF=BD,
∴BD=AC,④正确;
因此正确的结论有3个:①②④.
点评:此题通过反比例函数的性质来证图形的面积相等,根据面积相等来证线段的平行或相等,设计巧妙,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网