题目内容
【题目】如图,点P在正方形ABCD内,△PBC是正三角形,AC与PB相交于点E.有以下结论:①∠ACP=15°;②△APE是等腰三角形;③AE2=PEAB;④△APC的面积为S1,正方形ABCD的面积为S2,则S1:S2=1:4.其中正确的是 (把正确的序号填在横线上).
【答案】①②③.
【解析】
试题解析:∵△PBC是等边三角形,
∴∠PCB=60°,PC=BC,∠PCB=60°,
∵四边形ABCD是正方形,
∴BC=AB,∠ABC=90°,
∴∠ACB=45°,
∴∠ACP=60°-45°=15°,∴①正确;
∵∠ABC=90°,∠PBC=60°,
∴∠ABP=90°-60°=30°,
∵BC=PB,BC=AB,
∴PB=AB,
∴∠BPA=∠PAB=(180°-30°)=75°,
∵∠ABP=30°,∠BAC=45°,
∴∠AEP=45°+30°=75°=∠BPA,
∴AP=AE,
∴△APE为等腰三角形,∴②正确;
∵∠APB=∠APB,∠AEP=∠PAB=75°,
∴△PAE∽△ABP,
∴,
∴AP2=PEAB,
∴AE2=PEAB;∴③正确;
连接PD,过D作DG⊥PC于G,过P作PF⊥AD于F,
设正方形的边长为2a,则S2=4a2,等边三角形PBC的边长为2a,高为a,
∴PF=2a-a=(2-)a,
∴S△APD=ADPF=(2-)a2,
∴∠PCD=90°-60°=30°,
∴GD=CD=a,
∴S△PCD=PCDG=a2,S△ACD=2a2,
∴S1=S△ACD-S△ADP-S△PCD=2a2-a2-(2-)a2=(-1)a2<a2,
∴S1:S2≠1:4.
∴④错误;
故答案为:①②③.
练习册系列答案
相关题目