题目内容
【题目】某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.
(1)该店销售该商品原来一天可获利润 元.
(2)设后来该商品每件售价降价元,此店一天可获利润元.
①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.
【答案】(1)2000;(2)①售价是75元,②售价为85元,利润最大为3125元.
【解析】
(1)用每件利润乘以50件即可;
(2)每件售价降价x元,则每件利润为(100-60-x)元,销售量为(50+5x)件,它们的乘积为利润y,
①利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;
②由于y=(100-60-x)(50+5x),则可利用二次函数的性质确定最大利润值.
解:(1)解:(1)该网店销售该商品原来一天可获利润为(100-60)×50=2000(元),
故答案为2000;
(2)①
解得或,
又因尽量多增加销售量,故.
售价是元.
答:每件商品的售价应降价25元;
②,
当时,售价为元,利润最大为3125元.
答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元.
练习册系列答案
相关题目