题目内容
【题目】看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°( )
∴∠ADC=∠EGC(等量代换)
∴AD∥EG( )
∴∠1=∠2( )
∠E=∠3( )
又∵∠E=∠1( )
∴∠2=∠3( )
∴AD平分∠BAC( ).
【答案】垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义.
【解析】试题分析:由垂直可证明AD∥EG,由平行线的性质可得到∠1=∠2=∠3=∠E,可证得结论,据此填空即可.
证明:
∵AD⊥BC于D,EG⊥BC于G(已知),
∴∠ADC=90°,∠EGC=90°(垂直的定义),
∴∠ADC=∠EGC(等量代换),
∴AD∥EG(同位角相等,两直线平行),
∴∠1=∠2(两直线平行,内错角相等),
∠E=∠3(两直线平行,同位角相等),
又∵∠E=∠1(已知),
∴∠2=∠3(等量代换),
∴AD平分∠BAC(角平分线的定义).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义.
练习册系列答案
相关题目