ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪx1=
£®x2=
£®¡àx1+x2=
=-
£¬x1•x2=
=
£®×ÛÉϵã¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
£¬x1x2=
£®ÀûÓôË֪ʶ½â¾ö£ºÒÑÖªx1£¬x2ÊÇ·½³Ìx2-x-1=0µÄÁ½¸ù£¬²»½â·½³ÌÇóÏÂÁÐʽ×ÓµÄÖµ£º
¢Ùx12+x22£»
¢Ú£¨x1+1£©£¨x2+1£©£®
-b+
| ||
2a |
-b-
| ||
2a |
-2b |
2a |
b |
a |
b2-(b2-4ac) |
4a2 |
c |
a |
b |
a |
c |
a |
¢Ùx12+x22£»
¢Ú£¨x1+1£©£¨x2+1£©£®
·ÖÎö£º¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃµ½x1+x2=1£¬x1•x2=1£¬È»ºó±äÐ΢Ùx12+x22=£¨x1+x2£©2-2x1•x2£¬¢Ú£¨x1+1£©£¨x2+1£©=x1•x2+x1+x2+1£¬ÔÙ·Ö±ðÀûÓÃÕûÌå˼Ïë¼ÆËã¼´¿É£®
½â´ð£º½â£º¸ù¾ÝÌâÒâµÃx1+x2=1£¬x1•x2=1£¬
¢Ùx12+x22=£¨x1+x2£©2-2x1•x2=12-2¡Á1=-1£»
¢Ú£¨x1+1£©£¨x2+1£©=x1•x2+x1+x2+1=1+1+1=3£®
¢Ùx12+x22=£¨x1+x2£©2-2x1•x2=12-2¡Á1=-1£»
¢Ú£¨x1+1£©£¨x2+1£©=x1•x2+x1+x2+1=1+1+1=3£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄ¸ùÓëϵÊýµÄ¹Øϵ£ºÈô·½³ÌÁ½¸öΪx1£¬x2£¬Ôòx1+x2=-
£¬x1•x2=
£®
b |
a |
c |
a |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿