题目内容

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.

猜想结论:(要求用文字语言叙述) 写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

【答案】(1)四边形ABCD是垂美四边形;(2)垂美四边形的两组对边的平方和相等;(3)

【解析】

试题分析:(1)根据垂直平分线的判定定理证明即可;

(2)根据垂直的定义和勾股定理解答即可;

(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.

试题解析:(1)四边形ABCD是垂美四边形.

证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;

(2)猜想结论:垂美四边形的两组对边的平方和相等.

如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:.

证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,= =,∴

(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG=AC,GAB=CAE,AB=AE,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,,∵AC=4,AB=5,∴BC=3,CG=,BE=,∴=73,∴GE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网