题目内容
【题目】如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为( )
A. 50° B. 55° C. 60° D. 45°
【答案】A
【解析】首先延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.
【解答】解:延长PF交AB的延长线于点G.如图所示:
在△BGF与△CPF中,∠GBF=∠PCF,BF=CF,∠BFG=∠CFG,,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点.
又∵由题可知,∠BEP=90°,
∴EF=PG,
∵PF=PG,
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=80°,
∵E,F分别为AB,BC的中点,
∴BE=BF,∠BEF=∠BFE==50°,
∴∠FPC=50°;
故选A.
“点睛”此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.
练习册系列答案
相关题目
【题目】计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示:C+F=1B,19﹣F=A,18÷4=6,则A×B=( )
A. 72 B. 6E C. 5F D. B0