题目内容
【题目】如图,已知四边形是边长为的正方形,以为直径向正方形内作半圆,为半圆上一动点(不与、重合),当________时,为等腰三角形.
【答案】或或
【解析】
分别从当PA=PD,PA=AD,AD=PD时,△PAD是等腰三角形讨论,然后由等腰三角形的性质与射影定理即可求得答案.
解:①当PA=PD时,
此时P位于四边形ABCD的中心,
过点P作PE⊥AD于E,作PM⊥AB于M,
则四边形EAMP是正方形,
∴PM=PE=AB=2,
∵PM2=AMBM=4,
∵AM+BM=4,
∴AM=2,
∴PA=2,
②当PA=AD时,PA=4(舍);
③当PD=DA时,以点D为圆心,DA为半径作圆与弧AB的交点为点P.
连PD,令AB中点为O,再连DO,PO,DO交AP于点G,
则△ADO≌△PDO,
∴DO⊥AP,AG=PG,
∴AP=2AG,
又∵DA=2AO,
∴AG=2OG,
设AG为2x,OG为x,
∴(2x)2+x2=4,
∴x=,
∴AG=2x=,
∴PA=2AG=;
∴PA=2或4或,
故答案为:2或4或.
练习册系列答案
相关题目
【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总成绩 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)求两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.