题目内容
【题目】已知,AB//CD,(1)如图,若 E 为 DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线, 求证:AF//CG.
(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE
的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.
【答案】(1)见解析(2)AF⊥CG,理由见解析
【解析】
(1)根据角平分线的性质及平行线的判定即可求解;
(2)根据题意作出图形,根据平行线的性质即可求解.
(1)∵AB//CD
∴∠BAC=∠ACE,
∵AF、CG 分别为∠BAC、∠ACE的平分线,
∴∠CAF=∠BAC, ∠ACG=∠ACE,
∴∠CAF=∠ACG
∴AF//CG.
(2)AF⊥CG,理由如下:
如图,AF、CG 分别为∠BAC、∠ACE的平分线,
∴∠1=∠BAC,∠2=∠ACD,
∵AB//CD,
∴∠BAC+∠ACD=180°,
∴∠1+∠2=∠BAC+∠ACD=(∠BAC+∠ACD)=90°,
∴∠3=180°-(∠1+∠2)=90°,
∴AF⊥CG.
【题目】探究逼近的有理近似值.
方法介绍:
经过步操作(为正整数)不断寻找有理数,,使得,并且让的值越来越小,同时利用数轴工具将任务几何化,直观理解通过等分线段的方法不断缩小对应的点所在线段的长度(二分法)
思路
在数轴上记,对应的点分别为,和的平均数对应线段的中点(记为).通过判断还是,得到点是在二等分后的“左线段”上还是“右线段”上,重复上述步骤,不断得到,从而得到更精确的近似值.
具体操作步骤及填写“阅读活动任务单”:
(1)当时,
①寻找左右界值:先寻找两个连续正整数,使得.
因为,所以,那么,,线段的中点对应的数.
②二分定位:判断点在“左线段”上还是在“右线段”上.
比较7与的大小,从而确定与的大小;
因为 > (填 “>”或“<”),得到点在线段 上(填“”或“”).
(2)当时,在(1)中所得的基础上,仿照以上步骤,继续进行下去,得到表中时的相应内容.
请继续仿照以上步骤操作下去,补全“阅读活动任务单”:
的值 | 还是 | 点在“左线段”上还是“右线段”上 | 得出更精确的与,,的大小关系 | |||
1 | 2 | 3 | 2.5 | 点在线段上 | ||
2 | 2.5 | 3 | 2.75 | 点在线段上 | ||
3 | 2.5 | 2.75 | 2.625 | |||
4 |