题目内容
如图在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,OB=8,OC=4,则△BDO的面积为______.
∵BC∥AO,
∴∠BOA=∠OBC,
根据翻折不变性得,∠A1OB=∠BOA,
∴∠OBC=∠A1OB,
∴DO=DB.
设DO=DB=xcm,
则CD=(8-x)cm,
又∵OC=4,
∴(8-x)2+42=x2,
解得x=5.
∴BD=5,
∴S△BDO=
×5×4=10;
故答案为:10.
∴∠BOA=∠OBC,
根据翻折不变性得,∠A1OB=∠BOA,
∴∠OBC=∠A1OB,
∴DO=DB.
设DO=DB=xcm,
则CD=(8-x)cm,
又∵OC=4,
∴(8-x)2+42=x2,
解得x=5.
∴BD=5,
∴S△BDO=
1 |
2 |
故答案为:10.
练习册系列答案
相关题目