题目内容

【题目】如图,已知AB=AC=AD,CAD=60°,分别连接BC、BD,作AE平分∠BACBD于点E,若BE=4,ED=8,则DF=_____

【答案】6

【解析】

连接CE、CD,取DE的中点M,连接CM.首先证明△ECM,△ACD度数等边三角形,再证明△CEF∽△DEC即可解决问题.

解:连接CE、CD,取DE的中点M,连接CM.

∵AB=AC,∠EAB=∠EAC,AE=AE,

∴△EAB≌△EAC,

∴BE=EC=4,∠ABE=∠ACE,

∵AB=AD,

∴∠ABE=∠ADB,

∴∠ACE=∠ADF,

∵∠DFA=∠CFE,

∴∠DAF=∠CEF=60°,

∵EM=ED=4,

∴CE=EM,

∴△EMC是等边三角形,

∴CM=EM=DM,∠EMC=60°,

∵∠EMC=∠MCD+∠MDC,

∴∠MCD=∠MDC=30°,

∵AC=AD,∠CAD=60°,

∴△ACD是等边三角形,

∴∠ADC=60°,

∴∠ADB=∠ABD=∠ACE=∠CDB=30°,

∵∠CEF=∠CED,

∴△CEF∽△DEC,

∴EC2=EFED,

∴16=8EF,

∴EF=2,DF=DE﹣EF=6.

故答案为6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网