题目内容
【题目】如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.
求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.
【答案】证明见解析.
【解析】试题分析:根据正方形的性质和等腰三角形的性质得出∠ABP=∠DCP,再利用SAS判定三角形全等即可;(2)根据已知条件和正方形的性质得到△APD为等边三角形,求得∠DAP=60,即可分别求出∠PAC、∠BAP的度数,即可得到二者关系.
试题解析:
(1)∵四边形ABCD是正方形,∴∠ABC=∠DCB=90.
∵PB=PC,∴∠PBC=∠PCB.
∴∠ABC∠PBC=∠DCB∠PCB,即∠ABP=∠DCP.
又∵AB=DC,PB=PC,
∴△APB≌△DPC.(3分)
(2)证明:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45.
∵△APB≌△DPC,∴AP=DP.
又∵AP=AB=AD,∴DP=AP=AD.
∴△APD是等边三角形。
∴∠DAP=60.
∴∠PAC=∠DAP∠DAC=15.
∴∠BAP=∠BAC∠PAC=30.
∴∠BAP=2∠PAC.
练习册系列答案
相关题目