题目内容
【题目】如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,
点G是BC、AE延长线的交点,AG与CD相交于点F。
求证:四边形ABCD是正方形;
当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论。
【答案】(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE。
∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE。
∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD。
∴∠CBE=∠ABE=45°。∴△ABD与△BCD是等腰直角三角形。
∴AB=AD=BC=CD,∴四边形ABCD是正方形。
(2)解:当AE=2EF时,FG=3EF。证明如下:
∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE。
∵AE=2EF,∴BE:DE=AE:EF=2。∴BC:AD=BE:DE=2,即BG=2AD。
∵BC=AD,∴CG=AD。
∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF。
【解析】
矩形的性质,三角形外角的性质,等腰直角三角形的判定和性质,正方形的判定,相似三角形的判定和性质。
(2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=2EF,利用相似三角形的对应边成比例,即可求得FG=3EF。
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;
(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;
(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
【题目】“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.
颜色 | 奖品 |
红色 | 玩具熊 |
黄色 | 童话书 |
绿色 | 彩笔 |
小明和妈妈购买了125元的商品,请你分析计算:
(1)小明获得奖品的概率是多少?
(2)小明获得童话书的概率是多少?