题目内容
【题目】如图,C、F在BE上,∠A=∠D,AC∥DF,BF=EC.你知道AB与DE有什么关系?请说明理由.
【答案】AB=DE且AB∥DE,理由详见解析.
【解析】
试题分析:先求出BC=EF,根据两直线平行,内错角相等可得∠ACF=∠DFC,再根据等角的补角相等求出∠ACB=∠DFE,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得AB=DE,全等三角形对应角相等可得∠B=∠E,再根据内错角相等,两直线平行可得AB∥DE.
试题解析:AB=DE且AB∥DE.
理由如下:∵BF=EC,
∴BF﹣CF=EC﹣CF,即BC=EF,
∵AC∥DF,
∴∠ACF=∠DFC,
∴180°﹣∠ACF=180°﹣∠DFC,
即∠ACB=∠DFE,
在△ABC和△DEF中,
∠A=∠D,∠ACB=∠DFE,BC=EF,
∴△ABC≌△DEF,
∴AB=DE,∠B=∠E,
∴AB∥DE,
综上所述,AB与DE的关系是AB=DE且AB∥DE.
练习册系列答案
相关题目