题目内容
课本上有这样两个问题:如图,从甲地到乙地有3条路,走哪条路较近?从甲地到乙地能否修一条最短的路?这些问题均与关于线段的一个基本事实相关,这个基本事实是__________.
如图,已知直线y=kx+3与y=mx相交于点P(2,1).
(1)求这两条直线的表达式;
(2)求图中阴影部分的面积.
贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).
如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.
解方程:
(1);
(2).
方程2x=4的解是_____.
下列四个数中,在-3到0之间的数是( )
A. -1 B. 1 C. -3 D. 3
“江北公开课”是江北区教育系统内的省特级教师,市、区名师和教坛新秀,结合各学科的教学重点进行录制,通过江北电视台直播,同时通过多个渠道向公众免费提供优质的公共教育产品.“江北公开课”的播出时间为每周日上午9点30分,那么这个时刻的时针与分针所夹角的度数为_____.(本试卷只讨论大于0°且小于180°的角)
在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.