题目内容
24、如图,已知AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB=BC.
分析:先过A作AE⊥CD,交CD的延长线于点E,由于AB⊥BC,CD⊥BC,AE⊥CD,易证四边形ABCE是长方形,而∠AMB=75°,∠DMC=45°,可求∠AMD=60°,∠CDM=45°,而AM=DM,那么△AMD是等边三角形,于是∠ADM=∠MAD=60°,AM=AD,∠ADE=75°,利用AAS可证△ADE≌△AMB,可得AB=AE,易证四边形ABCE是正方形,从而有AB=BC.
解答:证明:如右图所示,过A作AE⊥CD,交CD的延长线于点E,
∵AB⊥BC,CD⊥BC,AE⊥CD,
∴∠B=∠C=∠E=90°,
∴四边形ABCE是长方形,
∵∠AMB=75°,∠DMC=45°,
∴∠AMD=60°,∠CDM=45°,
又∵AM=MD,
∴△AMD是等边三角形,
∴∠ADM=∠MAD=60°,AM=AD,∠ADE=75°,
∴∠CDM=45°,
∴∠CMD=45°,
∴CD=CM,
∴DE=BM,
∴△ADE≌△AMB,
∴AB=AE,
∴四边形ABCE是正方形,
∴AB=BC.
∵AB⊥BC,CD⊥BC,AE⊥CD,
∴∠B=∠C=∠E=90°,
∴四边形ABCE是长方形,
∵∠AMB=75°,∠DMC=45°,
∴∠AMD=60°,∠CDM=45°,
又∵AM=MD,
∴△AMD是等边三角形,
∴∠ADM=∠MAD=60°,AM=AD,∠ADE=75°,
∴∠CDM=45°,
∴∠CMD=45°,
∴CD=CM,
∴DE=BM,
∴△ADE≌△AMB,
∴AB=AE,
∴四边形ABCE是正方形,
∴AB=BC.
点评:本题考查了全等三角形的判定和性质、正方形的判定和性质、长方形的判定、等边三角形的判定和性质.解题的关键是作辅助线,构造正方形.
练习册系列答案
相关题目