题目内容
【题目】如图,矩形ABCD中,E是AC的中点,点A、B在x轴上.若函数( )的图像过D、E两点,则矩形ABCD的面积为______.
【答案】16
【解析】分析:过E作EF⊥AB于F,由三角形中位线定理可得AD=2EF,设点D的横坐标为m,D点坐标为(m,),得出AD=,即可得出EF=,根据图象上的坐标特征得出E的横坐标为2m,继而得出AB=2m,然后根据矩形的面积公式即可求得.
详解:过E作EF⊥AB于F,
∵点E是矩形ABCD对角线的交点,
∴AE=CE,
∴EF是△ABC的中位线,
∴AD=2EF,
设点D的横坐标为m,且点D在反比例函数y=(x>0)上,
∴D点坐标为(m,),
∴AD=,
∴EF=,
∴E(2m,),
∴AF=m,
∴AB=2m,
∴矩形ABCD的面积=2m=16,
故答案为16.
【题目】某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
(2)求总利润w关于x的函数解析式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
饮料 | 果汁饮料 | 碳酸饮料 |
进价(元/箱) | 40 | 25 |
售价(元/箱) | 52 | 32 |
【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:
每人加工零件个数 | 540 | 450 | 300 | 240 | 210 | 120 |
人数 | 1 | 1 | 2 | 6 | 3 | 2 |
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?