题目内容
(1)计算:(3 |
1 |
2 |
(2)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.
分析:(1)按有理数的运算法则计算即可;
(2)由同角的余角相等知,∠FAB=∠DAE,由正方形的性质知,∠AB=AD,∠ABF=∠ADE=90°,则ASA证得△AFB≌△ADE?DE=BF.
(2)由同角的余角相等知,∠FAB=∠DAE,由正方形的性质知,∠AB=AD,∠ABF=∠ADE=90°,则ASA证得△AFB≌△ADE?DE=BF.
解答:(1)解:原式=3-2-8=-7;
(2)证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠FAB=∠DAE,
∵∠AB=AD,∠ABF=∠ADE,
∴△AFB≌△ADE,
∴DE=BF.
(2)证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠FAB=∠DAE,
∵∠AB=AD,∠ABF=∠ADE,
∴△AFB≌△ADE,
∴DE=BF.
点评:此题即考查了实数的运算又考查了正方形的性质.学生对学过的知识要系统起来.
练习册系列答案
相关题目