题目内容
如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.
证明见解析
解析试题分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD。
证明:∵AD∥BC,∴△EAD∽△ECB。
∴AE:CE=DE:BE。
∵AE=4,CE=8,DE=3,∴BE=6。
∵S梯形=(AD+BC)×=54,∴AD+BC=15。
过D作DF∥AC交BC延长线于F,
则四边形ACFD是平行四边形,
∴CF=AD。∴BF=AD+BC=15。
在△BDF中,BD2+DF2=92+122=225,BF2=225,
∴BD2+DF2=BF2。∴BD⊥DF。
∵AC∥DF,∴AC⊥BD。
练习册系列答案
相关题目
|
如图,在正方形铁皮上剪下一个圆和扇形(圆与扇形外切,且与正方形的边相切),
使之恰好围成如图所示的一个圆锥模型,设圆半径为,扇形半径为R,则R与的关系是 ( )
A.R=2r | B.R="4r" |
C.R=2πr | D.R=4πr |