题目内容
【题目】如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.
(1)求证:AB=AC;
(2)若AD=,∠DAC=30°,求AC的长.
【答案】(1)证明见解析;(2)4.
【解析】
试题分析:(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.
(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.
试题解析:(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,∵BD=DC,DE=DF,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.
(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵,∴,∵a>0,∴a=2,∴AC=2a=4.
练习册系列答案
相关题目
【题目】随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:
数据段 | 频数 | 频率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | c |
50﹣60 | a | 0.39 |
60﹣70 | b | d |
70﹣80 | 20 | 0.10 |
总计 | 200 | 1 |
(1)表中a、b、c、d分别为:a=; b=; c=; d= .
(2)补全频数分布直方图;
(3)如果某天该路段约有1500辆通过,汽车时速不低于60千米即为违章,通过该统计数据估计当天违章车辆约有多少辆?