题目内容
(1)求∠ABD的度数;
(2)若AD=2,求对角线BD的长.
分析:(1)根据等腰梯形在同一底上的两个角相等,求得∠ABC=60°,再由BD平分∠ABC,得∠ABD的度数;
(2)判断出△ABD是直角三角形,由勾股定理求得BD.
(2)判断出△ABD是直角三角形,由勾股定理求得BD.
解答:解:(1)∵DC∥AB,AD=BC,
∴梯形ABCD是等腰梯形,∴∠ABC=∠A=60°,
又∵BD平分∠ABC,∠ABD=∠CBD=
∠ABC=30°.
(2)∵∠A=60°,∠ABD=30°,
∴∠ADB=90°,
∴AB=2AD=4,(直角三角形中30°所对的边是斜边的一半),
∴对角线BD=
=2
.
∴梯形ABCD是等腰梯形,∴∠ABC=∠A=60°,
又∵BD平分∠ABC,∠ABD=∠CBD=
| 1 |
| 2 |
(2)∵∠A=60°,∠ABD=30°,
∴∠ADB=90°,
∴AB=2AD=4,(直角三角形中30°所对的边是斜边的一半),
∴对角线BD=
| 42-22 |
| 3 |
点评:本题考查了等腰三角形的性质,勾股定理的应用.
练习册系列答案
相关题目