题目内容

14、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)

统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)计算两班比赛数据的方差;
(4)你认为应该定哪一个班为冠军?为什么?
分析:(1)根据优秀率=优秀人数除以总人数计算;
(2)根据中位数的定义求解;
(3)根据平均数和方差的概念计算.
解答:解:
(1)甲班的优秀率=2÷5=0.4=40%;乙班的优秀率=3÷5=0.6=60%;
(2)甲班5名学生比赛成绩的中位数是97(个);
乙班5名学生比赛成绩的中位数是100(个);

(3)甲班的平均数=(89+100+96+118+97)÷5=100(个),
甲班的方差S2=[(89-100)2+(100-100)2+(96-100)2+(118-100)2+(97-100)2]÷5=94
乙班的平均数=(100+96+110+91+104)÷5=100(个),
乙班的方差S2=[(100-100)2+(96-100)2+(110-100)2+(91-100)2+(104-100)2]÷5=42.6;
∴S2>S2
(4)乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好.
点评:本题考查了中位数、平均数和方差等概念以及运用.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动.
一般地设n个数据,x1,x2,…xn的平均数为$overline{x}$,则方差S2=$frac{1}{n}$[(x1-$overline{x}$)2+(x2-$overline{x}$)2+…+(xn-$overline{x}$)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网