题目内容
【题目】已知,如图,延长的各边,使得,,顺次连接,得到为等边三角形.
求证:(1);(2)为等边三角形.
【答案】(1)证明见解析;(2)证明见解析
【解析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.
(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.
证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换)
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).
∴△ABC是等边三角形(等边三角形的判定).
练习册系列答案
相关题目