题目内容

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.
分析:连接DM,根据已知分析可得满足等腰三角形的多种情况:PM=CM或CM=PM,然后根据勾股定理进行分析计算.
解答:精英家教网解:根据已知得AD∥BM,AD=BM=6,则四边形ABDM是平行四边形.
又∠ABC=90°,根据勾股定理,得CD=10.
①作CM的中垂线交CD于P,则△PMC是等腰三角形,此时,CP=5;
②当CP=CM=8时,△PMC是等腰三角形;
③当点P在AD上,DP=2
7
时,CM=PM=8;
④当点P在AB上,BP=2
7
时,CM=PM=8;
故有四个.
点评:此题主要考查梯形的性质及等腰梯形的判定的理解及应用,有难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网