题目内容
【题目】如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为_____km(精确到0.1).
【答案】3.4.
【解析】分析: 根据题意在CD上取一点E,使BD=DE,设BD=DE=x,则由AD与CD的关系和勾股定理可求得x,从而可求得CD的长.
详解: 在CD上取一点E,使BD=DE,设BD=DE=x.
∵BD=DE,
∴∠EBD=45°,
由题意可得∠CAD=45°,
∴AD=DC,
∵从B测得船C在北偏东22.5°的方向,
∴∠BCE=∠CBE=22.5°,
∴BE=EC,
∵AB=AD﹣BD=2km,
∴EC=BE=DC﹣DE=2km,
∵BD=DE=x,
∴CE=BE=x,
∴2+x=x+x,
解得x=.
∴DC=(2+)≈3.4(km)
故答案为3.4.
点睛: 此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.
【题目】观察理解,并解决问题.
问题情境:如图所示,用一些相同的小正方形,拼在一起,排成如下的一些大正方形:
问题解决:(1)完成下表:
图序号 | 1 | 2 | 3 | 4 | … | |
每一行小正方形的个数 | 1 | 2 | 3 | ______ | … | ______ |
阴影小正方形的个数 | 1 | 3 | 5 | ______ | … | ______ |
(2)根据图形规律推测:______(用含的代数式表示)
(3)像(1),(2)这样,根据某类事物的部分对象具有的某种性质,推出这类事物的所有对象具有的这种性质的推理,叫做归纳推理.对于科学的发现,归纳推理是十分有用的,通过观察、实验,对有限个对象的性质作归纳整理,提出对某类事物带有规律性的猜测,是科学研究的基本方法.请观察下列等式的规律:第一个等式:;第二个等式:;第三个等式:;…猜想并直接写出第个等式.(用含的代数式表示)