题目内容
【题目】如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
A. 12B. 10C. 8D. 不确定
【答案】B
【解析】
根据角平分线的定义可得∠ABE=∠CBE,∠ACE=∠BCE,再根据两直线平行,内错角相等可得∠CBE=∠BEM,∠BCE=∠CEN,然后求出∠ABE=∠BEM,∠ACE=∠CEN,根据等角对等边可得BM=ME,CN=NE,然后求出△AMN的周长=AB+AC.
解:∵∠ABC和∠ACB的平分线交于点E,
∴∠ABE=∠CBE,∠ACE=∠BCE,
∵MN∥BC,
∴∠CBE=∠BEM,∠BCE=∠CEN,
∴∠ABE=∠BEM,∠ACE=∠CEN,
∴BM=ME,CN=NE,
∴△AMN的周长=AM+ME+AN+NE=AB+AC,
∵AB=AC=4,
∴△AMN的周长=6+4=10.
故选:B.
练习册系列答案
相关题目