题目内容

若a、b、c是△ABC中∠A、∠B、∠C的对边,抛物线y=x2-2ax+b2交x轴于M(a+c,0),则△ABC是


  1. A.
    等腰三角形
  2. B.
    等边三角形
  3. C.
    直角三角形
  4. D.
    不确定
C
分析:抛物线y=x2-2ax+b2与x轴于M(a+c,0),把y=0代入抛物先的解析式,利用求根公式求出x的值即可求出a、b、c的关系式,进而可判断出三角形的形状.
解答:∵抛物线y=x2-2ax+b2交x轴于M(a+c,0),
∴当y=0时,x=a+c,
把y=0代入抛物线y=x2-2ax+b2交得,抛物线0=x2-2ax+b2
解得,x==a±
∵a、b、c是△ABC中∠A、∠B、∠C的对边,
∴a>0,b>0,c>0,
∴a+=a+c,即=c,
解得a2-b2=c2,即a2+c2=b2,故此三角形为直角三角形.
故选C.
点评:本题考查的是抛物线与x轴的交点及勾股定理的逆定理,解答此类题目时不要把抛物线上的点的坐标盲目代入求解,应按具体问题而定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网