题目内容
【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).
【答案】(1)①135°;②40°;(2)∠ACB+∠DCE=180°,理由见解析;(3)30°、45°.
【解析】
(1)①根据直角三角板的性质结合∠DCB=45°即可得出∠ACB的度数;
②由∠ACB=140°,∠ECB=90°,可得出∠ACE的度数,进而得出∠DCE的度数;
(2)根据①中的结论可提出猜想,再由∠ACB=∠ACD+∠DCB,∠ACB+∠DCE=90°+∠DCB+∠DCE可得出结论;
(3)分CB∥AD、EB∥AC两种情况进行讨论即可.
(1)①∵∠DCB=45°,∠ACD=90°,
∴∠ACB=∠DCB+∠ACD=45°+90°=135°,
故答案为:135°;
②∵∠ACB=140°,∠ECB=90°,
∴∠ACE=140°﹣90°=50°,
∴∠DCE=90°﹣∠ACE=90°﹣50°=40°,
故答案为:40°;
(2)猜想:∠ACB+∠DCE=180°,
理由如下:∵∠ACE=90°﹣∠DCE,
又∵∠ACB=∠ACE+90°,
∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE,
即∠ACB+∠DCE=180°;
(3)30°、45°.
理由:当CB∥AD时(如图1),
∴∠AFC=∠FCB=90°,
∵∠A=60°,
∴∠ACE=90°-∠A=30°;
当EB∥AC时(如图2),
∴∠ACE=∠E=45°.