题目内容

AE |
BE |
BF |
CF |
A、40° | B、60° |
C、80° | D、100° |
分析:根据菱形ABCD中,
=
,和AB=BC,等边△DEF,利用余弦定理可以求出,即可得∠BAD的值.
AE |
BE |
BF |
FC |
解答:
解:设菱形ABCD边长为x,AE=a,等边△DEF边长为y,
∵
=
,AB=BC,
∴AE=FB,BE=CF,
∴AE=BF=a,BE=CF=x-a,
∵△DEF是正三角形,
∠A=∠C,∠B=180°-∠A,
cosA=cos(180-B)=-cosB,
EF2=BE2+FB2-2BE•FBcosB,
=(x-a)2+a2-2(x-a)a•cosB,①
DE2=AD2+AE2-2AD•AEcosA,
=x2+(x-a)2-2x(x-a)cosA,②
②-①得:
x2-a2-2(x-a)cosA(x+a),
∴x2-a2=2(x-a)cosA(x+a),
∴2cosA=1,
∴cosA=
,
∴∠BAD=60°,
故选 B.

∵
AE |
BE |
BF |
FC |
∴AE=FB,BE=CF,
∴AE=BF=a,BE=CF=x-a,
∵△DEF是正三角形,
∠A=∠C,∠B=180°-∠A,
cosA=cos(180-B)=-cosB,
EF2=BE2+FB2-2BE•FBcosB,
=(x-a)2+a2-2(x-a)a•cosB,①
DE2=AD2+AE2-2AD•AEcosA,
=x2+(x-a)2-2x(x-a)cosA,②
②-①得:
x2-a2-2(x-a)cosA(x+a),
∴x2-a2=2(x-a)cosA(x+a),
∴2cosA=1,
∴cosA=
1 |
2 |
∴∠BAD=60°,
故选 B.
点评:本题考查了全等三角形的证明,考查了等边三角形各边长相等、各内角为60°的性质,考查了菱形各边长相等的性质,利用余弦定理得出是解题的关键.

练习册系列答案
相关题目