题目内容
填空:
=1-
,
=
-
,
=
-
,
=
-
,….
(1)试求
=
-
-
,
=
-
-
.
(2)请猜想能表示上述规律的等式,并用含字母n(n 整数)的式子表示出来
-
-
(3)请你直接利用(2)所得的结论计算下列式子
+
+
+…+
.
1 |
2 |
1 |
2 |
1 |
6 |
1 |
2 |
1 |
3 |
1 |
12 |
1 |
3 |
1 |
4 |
1 |
20 |
1 |
4 |
1 |
5 |
(1)试求
1 |
30 |
1 |
5 |
1 |
6 |
1 |
5 |
1 |
6 |
1 |
42 |
1 |
6 |
1 |
7 |
1 |
6 |
1 |
7 |
(2)请猜想能表示上述规律的等式,并用含字母n(n 整数)的式子表示出来
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n+1 |
(3)请你直接利用(2)所得的结论计算下列式子
1 |
x(x+1) |
1 |
(x+1)(x+2) |
1 |
(x+2)(x+3) |
1 |
(x+2008)(x+2009) |
分析:(1)根据信息,把30写成5×6,42写成6×7,然后拆分开即可;
(2)根据提供的信息,两个连续自然数的积的倒数等于这两个数的倒数的差,写出即可;
(3)把各分式分别拆分成两个分式的差,然后进行计算加减运算即可.
(2)根据提供的信息,两个连续自然数的积的倒数等于这两个数的倒数的差,写出即可;
(3)把各分式分别拆分成两个分式的差,然后进行计算加减运算即可.
解答:解:(1)
=
-
,
=
-
;
(2)
=
-
;
(3)
+
+
+…+
,
=
-
+
-
+
-
+…+
-
,
=
-
,
=
,
=
.
故答案为:
-
,
-
,
-
.
1 |
30 |
1 |
5 |
1 |
6 |
1 |
42 |
1 |
6 |
1 |
7 |
(2)
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
(3)
1 |
x(x+1) |
1 |
(x+1)(x+2) |
1 |
(x+2)(x+3) |
1 |
(x+2008)(x+2009) |
=
1 |
x |
1 |
x+1 |
1 |
x+1 |
1 |
x+2 |
1 |
x+2 |
1 |
x+3 |
1 |
x+2008 |
1 |
x+2009 |
=
1 |
x |
1 |
x+2009 |
=
x+2009-x |
x(x+2009) |
=
2009 |
x(x+2009) |
故答案为:
1 |
5 |
1 |
6 |
1 |
6 |
1 |
7 |
1 |
n |
1 |
n+1 |
点评:本题是对数字变化规律的考查,读懂题目信息,观察出“两个连续自然数的积的倒数等于这两个数的倒数的差”是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目