题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.
(1)求抛物线的表达式;
(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;
(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.
【答案】(1) y=﹣x2+2x+8;(2)点P();(3)
【解析】
(1)将点A、B、C的坐标代入二次函数表达式,即可求解;
(2)只有当∠PEA=∠AOC时,PEA△∽AOC,可得:PE=4AE,设点P坐标(4k﹣2,k),即可求解;
(3)利用Rt△PFD∽Rt△BOC得: ,再求出PD的最大值,即可求解.
解:(1)将点A、B、C的坐标代入二次函数表达式得:,
解得:a= -1,b=2,c=8,
故抛物线的表达式为:y=﹣x2+2x+8;
(2)∵点A(﹣2,0)、C(0,8),
∴OA=2,OC=8,
∵l⊥x轴,∴∠PEA=∠AOC=90°,
∵∠PAE≠∠CAO,
∴只有当∠PEA=∠AOC时,PEA△∽AOC,
此时,即:,
∴AE=4PE,
设点P的纵坐标为k,则PE=k,AE=4k,
∴OE=4k﹣2,
将点P坐标(4k﹣2,k)代入二次函数表达式并解得:
k=0或(舍去0),则点P();
(3)在Rt△PFD中,∠PFD=∠COB=90°,
∵l∥y轴,
∴∠PDF=∠COB,
∴△PFD∽△BOC,
∴,
∴S△PDF=S△BOC,
而S△BOC=OBOC=×4×8=16,
BC=,
∴S△PDF=S△BOC=PD2,
即当PD取得最大值时,S△PDF最大,
将B、C坐标代入一次函数表达式得:
,
解得:,
∴直线BC的表达式为:y=﹣2x+8,
设点P(m,﹣m2+2m+8),则点D(m,﹣2m+8),
则PD=﹣m2+2m+8+2m﹣8=﹣(m﹣2)2+4,
当m=2时,PD的最大值为4,
故当PD=4时,∴S△PDF=PD2=.
【题目】学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.
组别 | 课前预习时间 | 频数(人数) | 频率 |
1 | 2 | ||
2 | 0.10 | ||
3 | 16 | 0.32 | |
4 | |||
5 | 3 |
请根据图表中的信息,回答下列问题:
(1)本次调查的样本容量为 ,表中的 , , ;
(2)试计算第4组人数所对应的扇形圆心角的度数;
(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于的学生人数.