题目内容
已知:在△AOB和△COD中,OA=OB,OC=OD.
(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD ②∠APB=60°.
(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为
(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD ②∠APB=60°.
(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为
AC=BD
AC=BD
,∠APB的大小为α
α
(直接写出结果,不证明)分析:(1)①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.
②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=60°.
(2)由(1)小题的证明可知,AC=BD,∠APB=α.
②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=60°.
(2)由(1)小题的证明可知,AC=BD,∠APB=α.
解答:解:(1)①证明:∵∠AOB=∠COD=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD.
在△AOC和△BOD中,
,
∴△AOC≌△BOD(SAS),
∴AC=BD;
②证明:∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=60°;
(2)AC=BD,∠APB=α.
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD.
在△AOC和△BOD中,
|
∴△AOC≌△BOD(SAS),
∴AC=BD;
②证明:∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=60°;
(2)AC=BD,∠APB=α.
点评:本题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,正确运用等边三角形的性质是解题的关键.
练习册系列答案
相关题目