题目内容

如图,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23
.求AB的值.
分析:先求证∠CBD=∠A,sin∠CBD=sinA=
CD
BD
,后求出BD的长,根据锐角三角函数的定义求解即可.
解答:解:∵AB∥CD,BC⊥AB,
∴BC⊥CD.…(1分)
∵AD⊥BD,
∴∠ABD+∠A=90°.
又∵∠CBD+∠ABD=90°,
∴∠CBD=∠A.…(1分)
sinA=
2
3

sin∠CBD=
CD
BD
=
2
3
.…(1分)
∵CD=2,
∴BD=3.…(1分)
又∵sinA=
BD
AB
=
3
AB
=
2
3

AB=
9
2
.…(1分)
点评:本题考查梯形的知识,解答本题的关键是证明出∠CBD=∠A,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网