题目内容
(2011•梅州)如图,等腰梯形ABCD中,AB∥CD,AD=BC.将△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合.
(1)点C是否在以AB为直径的圆上?请说明理由;
(2)当AB=4时,求此梯形的面积.
(1)点C是否在以AB为直径的圆上?请说明理由;
(2)当AB=4时,求此梯形的面积.
分析:(1)连接MC,根据对折前后的两个角完全重合,利用角的关系证明AD∥MC,然后证明出四边形AMCD是平行四边形,根据平行四边形的对边相等得到AM=CD,从而得到AM=MC,又点M是AB的中点,所以AM=MC=MB,从而得证;
(2)先证明△BCM是等边三角形,然后求出等边三角形BM边上的高,再利用梯形的面积公式列式计算即可.
(2)先证明△BCM是等边三角形,然后求出等边三角形BM边上的高,再利用梯形的面积公式列式计算即可.
解答:解:(1)点C在以AB为直径的圆上.
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=
AB=2,
过点C作CE⊥MB,垂足为E,
则BE=
MB=1,
由勾股定理得,CE=
=
=
,
∴梯形ABCD的面积=
(2+4)×
=3
.
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=
1 |
2 |
过点C作CE⊥MB,垂足为E,
则BE=
1 |
2 |
由勾股定理得,CE=
BC2-BE2 |
22-12 |
3 |
∴梯形ABCD的面积=
1 |
2 |
3 |
3 |
点评:本题主要考查了等腰梯形的性质,平行四边形的判定与性质,等边三角形的判定与性质,勾股定理的应用,综合性较强,作出辅助线把梯形的问题转化为平行四边形与的问题是解题的关键.
练习册系列答案
相关题目