题目内容
(1)计算:| 2 |
| x2-4 |
| 1 |
| 2x-4 |
(2)先将分式:1-
| a-1 |
| a |
| a2-1 |
| a2+2a |
分析:(1)首先把分式进行通分,化为同分母的分式相减,依据法则即可求解;
(2)首先把分式的中的除法转化为乘法,然后通分,相加减即可化简,然后把a=2代入即可求解.
(2)首先把分式的中的除法转化为乘法,然后通分,相加减即可化简,然后把a=2代入即可求解.
解答:解:(1)原式=
-
=
-
=
=
=
=-
;
(2)原式=1-
•
=1-
=
-
=
=
=-
.
当a=2时,原式=-
=-
.
| 2 |
| (x+2)(x-2) |
| 1 |
| 2(x-2) |
=
| 4 |
| 2(x+2)(x-2) |
| x+2 |
| 2(x+2)(x-2) |
=
| 4-(x+2) |
| 2(x+2)(x-2) |
=
| 2-x |
| 2(x+2)(x-2) |
=
| -(x-2) |
| 2(x+2)(x-2) |
=-
| 1 |
| x+2 |
(2)原式=1-
| a-1 |
| a |
| a(a+2) |
| (a+1)(a-1) |
=1-
| a+2 |
| a+1 |
=
| a+1 |
| a+1 |
| a+2 |
| a+1 |
=
| a+1-(a+2) |
| a+1 |
=
| -1 |
| a+1 |
=-
| 1 |
| a+1 |
当a=2时,原式=-
| 1 |
| 2+1 |
| 1 |
| 3 |
点评:本题考查了分式的化简求值,注意在确定a的值时,一定要注意所取的数值使原式有意义.
练习册系列答案
相关题目