题目内容

精英家教网如图,△ABC中,D、E两点分别在AC、BC上,则AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=(  )
A、25°B、30°C、35°D、40°
分析:根据已知及等腰三角形的性质可求得两底角的度数,再根据∠ABD:∠DBC=3:4,列方程求解即可求出∠BDE的度数.
解答:解:∵AB=AC,CD=DE
∴∠C=∠DEC=∠ABC
∴AB∥DE
∵∠A=40°
∴∠C=∠DEC=∠ABC=
180°-40°
2
=70°
∵∠ABD:∠DBC=3:4
∴设∠ABD为3x,∠DBC为4x
∴3x+4x=70°
∴x=10°
∵AB∥DE
∴∠BDE=∠ABD=30°
故选B.
点评:本题考查了等边三角形的性质:等边对等角和三角形内角和定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网