题目内容

如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为


  1. A.
    120°
  2. B.
    135°
  3. C.
    150°
  4. D.
    180°
D
分析:根据翻折变换前后对应角不变,故∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,进而求出∠1+∠2的度数.
解答:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,
∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,
∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,
∴∠1+∠2=360°-180°=180°,
故选:D.
点评:此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网