题目内容
【题目】数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:
(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;
(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.
(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.
【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°
【解析】
(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;
(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.
解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,
∴∠ABD=∠BAD,
∴△ABD为等腰三角形,
∴∠BDC=72°=∠C,
∴△BCD为等腰三角形;
(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:
①当分割的直线过顶点B时,
【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点
此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;
【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点
此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;
【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况
△BCD以B为顶点:∠A=36°,∠D=72°,
∴∠ABD=72°,最大角的值为72°;
△BCD以C为顶点:∠A=36°,∠D=54°,
∴∠ABD=90°,最大角的值为90°;
△BCD以D为顶点:∠A=36°,∠D=36°
∴∠ABD=108°,最大角的值为108°;
②当分割三角形的直线过点D时情况和过点B一样的;
③当分割三角形的直线过点A时,
此时∠A=36°,∠D=12°,∠B=132°,
最大角的值为132°;
综上所述:最大角的可能值为72°,90°,108°,126°,132°.
【题目】铁一课间餐种类繁多,深受学生喜爱.这天饭堂在课间的出品有鸡腿、薯饼、鱼丸和鸡柳.某同学就九年级学生对课间餐各类食物的喜爱程度做了抽样调查,制成表格如下:
课间餐种类 | 人类 | 百分比 |
鸡腿 | 150 | 60% |
薯饼 | 30 | a |
鱼丸 | b | 12% |
鸡柳 | 40 | c |
(1)样本容量是 , a= , b= , c= .
(2)若小王和小李商议着一起去买课间餐,若他们对以上四种口味的课间餐喜爱程度相同.请你帮他们算一算他们买了相同课间餐的概率.